
Wake-Up Harvester Design for
Batteryless IoT System

FINAL REPORT

sdmay21-14

Henry Duwe

Jacob Bernardi, Edmund Duan, Douglas Zuercher, Kwanghum Park,
Bryce Staver, Zacharias Komodromos

sdmay21-14@iastate.edu

https://sdmay21-14.sd.ece.iastate.edu

Table of Contents
1 Introduction 5

1.1 Acknowledgements 5

1.2 Project Statement Summary 5

1.3 Previous Work And Literature 6

1.4 Design Revisions 6

1.5 Operational Environment 6

1.6 Requirements 6

1.7 Standards 7

1.8 Engineering Constraints 7

1.9 Security Concerns and Countermeasures 8

1.9.1 Physical Security 8

1.9.2 Cybersecurity 8

2 Implementation 8
2.1 Overall Design 8

2.2 PCB Implementation 9

2.3 MCU Software Implementation 10

2.4 Wake-Up Radio Implementation 11

3 Testing 12
3.1 Harvester Testing 12

3.2 MCU to WuR Testing 13

3.3 WuR to Interrupt MCU Testing 13

4 Appendices 15
4.1 Operation manual 15

4.1.1 Hardware Overview 15

4.1.2 Hardware Configuration 18

4.1.3 Software Overview & Configuration 19

4.1.4 Example Code Instructions 21

4.1.2 Additional Resources 22

4.2 Alternative versions 22

4.3 Considerations 24

4.4 Data 26

4.5 Hardware Schematics 30

5 References 35

Table of Figures

Figure 1: Current Working Design 8
Figure 2: PCB Layout 9
Figure 3: Powercast Harvester On Time Graph 11
Figure 4: Powercast Harvester Off Time Graph 12
Figure 5: Oscilloscope Reading of SPI 12
Figure 6: # of Tx and Rx pairs per Second vs Distance 13
Figure 7: PCB with major components highlighted 14
Figure 8: MCU port on PCB 15
Figure 9: PCB JTAG Interface 16
Figure 10: PCB with configurable parts 17
Figure 11: Proposed Design 22
Figure 12: Design Option 2 - Rejected 22
Figure 13: Intended Design 23
Figure 14: Powercast Harvester Test Results (complete) 26
Figure 15: AX5043 example Agent-Controller packet results 27
Figure 16: AX5043 example Agent-Controller power results 28
Figure 17: Main Schematic 29
Figure 18: Boost Regulator Schematic 30
Figure 19: Harvester Schematic 31
Figure 20: MCU Schematic 32
Figure 21: Transceiver Schematic 33

1 Introduction

1.1 ACKNOWLEDGEMENTS

The senior design team would like to formally acknowledge and thank Henry Duwe, Assistant
Professor at Iowa State University, for his technical advice on wake-up radios and low-power IoT
devices as well as the use of his lab space and components. His experience and knowledge has
helped guide the team and provide insight on potential issues which may be faced.

Additionally, we would like to thank Nathan Neihart, Assistant Professor at Iowa State University for
his time and help on debugging as well as the use of his lab space and equipment, which was
invaluable for debugging transmission and reception issues.

Finally, the team would also like to thank Vishak Narayanan, one of Professor Duwe’s graduate
students, for his assistance in testing and providing access to prior research. His prior research and
experience with the MCU used by the team dramatically decreased the learning curve and allowed
us to obtain second-opinions on suspected issues.

1.2 PROJECT STATEMENT SUMMARY

Many Internet of Things devices are designed to be batteryless. In order for them to operate, some
make use of an energy harvesting system. Once power is harvested, it is stored in a capacitor, which
is then used to power the device with values neither constant nor of high magnitude. The result is
that it is highly likely, if not guaranteed, that there will be times when the system is not powered
when dealing with a batteryless device. Our purpose is to provide such a device for Dr. Duwe and his
team so that the device can enter a low power state, and upon an RF trigger to wake up and
complete some task.

The solution presented by our team to this problem is the creation of a device which utilizes a
wake-up system to wait for a wake-up signal to be received. Upon reception, the wake-up system will
interrupt the microcontroller (MCU) to wake it up from a low power mode to normal operation. In
doing so, we end up with a system where a user is able to instruct the MCU to follow a process, and
it will enter a sleep mode when done. If it needs to activate at a certain time, it can do so by itself,
but if the user wants an external stimulus, they can use the wake up trigger to accomplish this. This
will create a more power-efficient system that wakes up the IoT device. It allows for greater ability
for IoT devices to be synchronized by the trigger signal, that is repeated by a device when received,
and to perform tasks in unison if they have enough charge to be powered on and are in sleep-mode.

1.3 PREVIOUS WORK AND LITERATURE

Although we are the first senior design team to implement a Wake-Up harvester, the concept of
Wake-Up radios has existed before, despite being relatively recent [1]. Wake-Up radios are described
as devices that are active only when they receive a specific signal or trigger and many have been
made in the past few years [1]. In our system, we are using a premade component for our wake-up
radio in addition to premade components for our power harvester, MCU, and DC-DC regulator.

1.4 DESIGN REVISIONS

Since the previous semester, the test team has made several changes to the originally proposed
design. At the request of the client, the team has added the capability for the MCU located on the
provided board to transmit at RF frequencies without the aid of a transceiver. While this method of
transmission is not recommended for low-power purposes, it will provide an additional means for
the client to perform research. Additionally, due to the silicon shortage, the team was not able to
obtain some components. The result of this is that the current working design does not use an
additional boost converter to power the transceiver, and so it is also powered off the harvester
output.

While modifications have been necessary due to supply chain shortages, the team has worked to
minimize the impact of these shortages on our client. Switches have been added so that, when
components can be ordered, the current product will still be able to function as initially intended.

1.5 OPERATIONAL ENVIRONMENT

The end-product is expected to be operated in indoor commercial environments, such as office
buildings and lab spaces, where electro-magnetic noise is not of significant concern and where
harvestable RF signals are prominent. The environment is expected to be clean and
climate-controlled such that dust and humidity are unlikely to interfere with electronics.

1.6 REQUIREMENTS

The functional requirements for this system are as follows:

● The system should reject incorrect trigger signals, activating only when a valid trigger has
been received

● The system should repeat the trigger signal to other nodes once received
● When a trigger is received, the device should enter normal operation
● The maximum average off time of a node should be no greater than one minute if a source

is within 1m
● The device is required to be easily interfaceable with user-provided sensors

The nonfunctional requirements for this system are as follows:

● The size of any node in the complete system should be no greater than 4” x 4”
● Each node should be batteryless, instead storing collected energy on a capacitor
● Nodes must be able to send and receive a trigger signal a distance of at least two meters
● Nodes should operate correctly in temperatures above 0°C and below 50°C.

1.7 STANDARDS

In terms of standards implemented in this project, we took the following into consideration:

ITU Radio Regulations for ISM bands

● License-free bands where we can transmit with limited regulations
● Transceiver transmits at 433 MHz (acceptable range: 433.05 - 434.79 MHz)
● RF energy harvested at 915 MHz (acceptable range: 902 - 928 MHz)

IPC 7351A & B

● Includes standards on the design of surface mount land patterns
● Includes adjustments for lead-free reflow cycles and newer land patterns, such as QFN

devices
● IPC standards required by Oshpark in order to manufacture PCBs

IPC-A-610

● Guidelines for assembly of PCB, including hardware installation, soldering criteria, and
various connection requirements

1.8 ENGINEERING CONSTRAINTS

For this project, we had to consider these two types of limitations.

Limitations of the environment

● Nodes will be in an extremely noisy environment
● High levels of humidity, dust, temperatures
● Availability of RF energy to harvest

Limited efficiency of RF harvesting technology

● Nodes are only able to harvest so much energy over a given period of time
● MCU will consume a relatively large amount of power when in an on-state
● Using lower voltage leads to less efficiency which causes wasted power

1.9 SECURITY CONCERNS AND COUNTERMEASURES

1.9.1 PHYSICAL SECURITY

The trigger is not intended to be secure from external sources; meaning that if someone knows the
frequency pattern being used, they will be able to trigger the IoT device if it has enough charge to
support the device being active.

Potential countermeasures could include creating a unique preamble that would need to be present
in the transmission to allow wake up of the MCU. This would add a level of security to the wake up
functionality that has been added by the team and is not known to the public. This countermeasure
was not implemented in this project as the main concern was functionality, not a high level of
security, and can easily be set by users later on.

1.9.2 CYBERSECURITY

This device is not connected to the internet or any other sort of local network so there is no security
concern of someone gaining access to the system from a remote location. A potential “attacker”
would only be able to disrupt the system if they were physically next to a node, and this is discussed
above.

2 Implementation

2.1 OVERALL DESIGN

This project is implemented on a printed circuit board or PCB as a one-piece system. Mounting holes
have been added so that individual nodes can be mounted in locations defined by the user. The
three main components, being the harvester, MCU, and wake-up radio (WuR) have been tested
individually as well as together. Our final tested design, which as mentioned in Section 1.2 is
different from our proposed and intended design, is depicted in the image below. The harvester will
be able to provide the system with power, while the MCU is able to complete its tasks and
communicate using RF through the WuR component. While the MCU is not in use, it can set itself
into a sleep mode for low power consumption. If the WuR receives a wake-up signal, it will be able to
interrupt the MCU to exit its sleep mode.

Figure 1: Current Working Design

2.2 PCB IMPLEMENTATION

To create the PCB, we used Altium PCB designer. From the left to right side of the board as seen in
Figure 2, we started with inputs and organized components by function before reaching and working
on the outputs. All necessary information for making the RF traces came from the PCB
manufacturer’s, Oshpark’s, two-layer prototype section, which included dielectric constant and
manufacturing capabilities among other aspects. Capabilities were an important factor to consider
since it could decide whether the board was manufacturable or not. On the left side of the PCB, the
harvester SMA connector is connected to the harvester using a grounded coplanar waveguide. To
avoid ESD issues, the team also created an RF ground for the SMA connectors by adding a gap
between the grounds. This was done because the team wanted a ground pour on the top of the PCB
with vias stitching the top and bottom ground layers together to make a lower inductance ground.

The waveguide was created to make the width of the trace or microstrip as close as possible to the
width of the connector and harvester input. The waveguide gap is tightly coupled at 6 mils to shrink
the microstrip and maintain a 50 Ω impedance match. Lastly for the RF input, to avoid excessive
attenuation, the line was made as short as possible.

After the harvester, we branch to a banana connector and slide switch. The slide switch enables
power for the MCU and the banana connector is for testing the MCU without needing to depend on
the harvester's erratic supply. The harvester also has a large capacitor for storing energy for the
device to use. We provide a connection to a secondary boost converter as per our original design to
increase efficiency with the lower loads for the transceiver which is on the lower right side of the
board. In order to account for the boost converter not being present on the board due to it being
out of stock, a switch was added to bypass the connection.

The MCU which is located above the previously-mentioned section has a header pin for
programming and supporting circuitry including debugging LEDs and connectors for the user. This is
surrounded by a copper pour for powering the MCU. This copper pour for power was made to
reduce noise by not creating a random distribution of power, a similar reason being applied for the

ground pours on the top and bottom of the board. As this board does not carry any high power
sections, most traces were kept at the Altium default of 10 mil which is more than enough of a width
for this application. Moving on to the test points, they were kept on the edges of the board to ensure
easy access for the user. Lastly is an RF balun circuit for the MCU to have Rx and Tx capabilities. This
section follows the same guidelines as the harvester input in order to avoid the above mentioned
issues.

Figure 2: PCB layout

2.3 MCU SOFTWARE IMPLEMENTATION

To take advantage of pre-existing libraries and MCU functionality, as well as satisfy client requests,
the MCU was first loaded with TI-RTOS, allowing for the use of a set of libraries provided by Texas
Instruments for their devices. Using the TI-RTOS provided dramatically more functionality and a
better user experience since it decreases the amount of low-level code necessary. The different
additional tools used include the SPI client, a timer client and its GPIO pins for LEDs and interrupts.

Once TI-RTOS was implemented, the team proceeded by generating a set of standard SPI methods
which can be called from anywhere in the program, and then began writing standard methods for
communicating with the transceiver. The goal of these methods is to make it possible to operate the
transceiver easily from anywhere in the program, and includes transmit, receive, Tx/Rx
configuration, and PLL ranging methods.

With standard methods written, the team proceeded by testing the methods with the transceiver
and then creating an example program which implements the base-functionality requested by the
client. This program allows for a node to be designated as either a controller or an agent. If
designated to be a controller, the MCU will enter an infinite loop where the MCU first instructs the
transceiver to send a packet, and then to listen for a packet to be sent back. The MCU will wait for
the packet to be returned for some period of time, which can be user defined. If the packet has not
been returned in the specified time period, the MCU assumes neighboring agents missed the packet
and restarts the loop. If the packet is received in the specified period of time, the MCU increments a
count and restarts the loop.

If a node is instead designed to be an agent, the MCU will enter an infinite loop where the MCU first
instructs the transceiver to listen for a packet. The transceiver will listen for a packet indefinitely,
without timeout, until a packet is received. Once received, the MCU will then re-transmit the packet
using the transceiver before returning to a listen-only mode.

By configuring one device as a controller and one device as an agent, the ability for a node to
receive, and then re-transmit, some wake-up signal can be verified. If additional nodes are
manufactured and added to the system, they will all wake up. This achieves the project’s base
functionality.

2.4 WAKE-UP RADIO IMPLEMENTATION

The wake-up radio (WuR) component, which is an AX5043 transceiver, requires external circuitry to
function appropriately. This circuitry is predominantly for the transceiver’s RF input and output,
although some is also necessary for the transceiver’s reference clock. Because it was important for
the team to obtain a usable transceiver as soon as possible for software purposes, the team opted
to purchase an evaluation-board with the transceiver and supporting circuitry already implemented
instead of designing our own board. After using the evaluation-board, the team decided to stick with
the board and implement the WuR on the final product using two headers which the evaluation
board can plug in to.

Because the evaluation board is intended to be used in a larger evaluation system sold by ON
Semiconductor, several signals on the evaluation board are not used in our design. One component
on the evaluation board, the TCXO, does not have a part number provided. To confirm the TCXO
operates at the expected frequency and can be powered by a 3.3V connection, the team contacted
ON Semiconductor. ON Semiconductor provided the TCXO part number (NT2016SA from NDK), and
from that the test team was able to confirm that the TCXO can be powered by a 3.3V connection and
does output a 48MHz signal.

In terms of software, the transceiver requires an MCU to function. The WuR communicates with the
MCU through an SPI bus. The transceiver interprets the SPI select line being low as an “active” signal,
meaning it will only interpret data on the MOSI line when select is low. The SPI clock positive-edge
triggered, where the positive-edge is expected to be located in the middle of any MOSI/MISO data
packet. Through this bus, the CC1352R MCU is able to read to and write from the AX5043’s registers
and the transceiver can be configured. This also allows for the transceiver’s operation mode to be
set, along with the data which will be sent.

In addition to the SPI bus, the AX5043’s IRQ pin is also connected to the MCU to implement the
wake-up component of the project. In the default configurations offered by the senior design team,
the transceiver is configured to set the IRQ pin high when it receives wireless data. This is used by
the MCU to determine when a wake-up signal has been received, at which point user code is run.

The AX5043 transceiver is extremely versatile and has many registers which can be set to achieve a
variety of different operating modes, power levels, and so on. The test team used ON

Semiconductor’s “AXRadioLab” software to calculate the register values for the options needed.
Details on how to use the MCU to configure and use the AX5043 are provided in the operation
manual, which can be found in the report Appendix.

3 Testing
The main parts of the project that were tested in isolation were the RF harvester’s power harvesting
capabilities, the ability for the MCU to communicate and program the WuR, and the ability for a WuR
to interrupt and wake up an MCU. All these were tested in controlled environments.

3.1 HARVESTER TESTING

For the harvester, the capacitor can ideally store 0.0391 J of energy and has a value of 50 mF. In
terms of testing, we set the Powercast harvester at varying distances from the transmitter and with
five loads/resistors at each distance. The distance was measured using a yardstick on a lab bench
and the resistors were measured using a digital multimeter before use. We used the oscilloscope to
probe the harvester output voltage and measured the on and off times for each test set, adjusting
when necessary. A note on testing energy harvesting devices such as this, is that any slight changes
can have noticeable effects on the data collected. This includes changes in weather and the testing
environment. Something we noticed over a few weeks of testing is that the results varied when in a
larger room compared to a smaller lab, and the temperature outside seemed to affect results
slightly. The results we collected, as mentioned, are only over the five resistance values. Using this
data one can calculate the current available by the harvester for different loads as well as the
duration it can provide it for. Below are plots of our results, with the table of the results in the
appendix under data:

Figure 3: Powercast Harvester On Time Graph

Figure 4: Powercast Harvester Off Time Graph

3.2 MCU TO WUR TESTING

To test the MCU’s ability to program and communicate with the AX5043 we used a
LaunchXL-CC1352R, an evaluation board offered by Texas Instruments that includes a CC1352R and
appropriate debugging circuitry on. This allowed the team to easily debug and program the MCU
using a micro-USB to USB connection with a computer running Code Composer Studio. The
launchpad’s MCU pins were connected using jumpers to a breadboard that housed the AX5043
which was on its own testboard. Once all the necessary pins were connected, the team used TI’s
functions to open an SPI connection at 4MHz with a clock phase such that the rising edge is centered
to the data being communicated. Using a test register on the AX5043 called “SCRATCH”, the team
was able to get the MCU to write a value to that register and read it back. By checking that the
read-back data matched with the written data, the team confirmed the ability for the MCU and WuR
to communicate with each other. The SPI communication was further confirmed by using a logic
analyzer to monitor the SPI line and decode data while example data was sent to/from the WuR.
Sample results from the logic analyzer are shown below.

Figure 5: Oscilloscope Reading of SPI

3.3 WUR TO INTERRUPT MCU TESTING

To test the wake up capability of the WuR, the team configured one MCU to be a “controller” and
another MCU to be an “agent”. Each MCU had a WuR device connected to it. The controller was
configured to create and transmit a packet at the desired carrier frequency repeatedly without
changing power modes. The agent was then configured into “continuous receive” mode, where the
transceiver constantly waits for a signal to be received. The agent was configured to use its IRQ pin
such that, when a valid packet was received, it would interrupt the connected MCU and inform it that

a message had been received. The MCU then read the received data and instructed the transceiver
to re-transmit it before returning to a continue receive mode.

Using this setup, the team was able to not only confirm the ability of the WuR to interrupt the MCU,
but also to observe basic information on how transmission range varies with transmission power. To
observe this information, the team configured the controller to use three different transmission
power values and moved the agent away slowly, tracking the number of successful “pings” at each
distance. This was done using low transmission power values since this optimizes for power
efficiency.

A graph of the number of times the device was able to receive a packet and repeat it in one second,
for 3 different transmit power values versus distance, is provided below.

Figure 6: # of Tx and Rx pairs per Second vs Distance

It is observed that the maximum transmission distance is severely limited, however we note that this
is achieved at a very low transmission power value. Additional testing at larger transmission power
values shows the ability to transmit over several meters, however the power consumption in this
scenario increases dramatically and further testing to determine the validity of using these power
values is necessary. Further, note that the data was collected while the transmitter was sending at
866MHz and the attached antennas were centered at 433MHz, meaning the reported distances are
lower than the distances expected to be observed during normal operation of the final product.

Because the controller device was instructed to repeatedly transmit data, it consumed significantly
more power than is expected to be observed during normal use of the provided product. The
current consumption observed by the team was between 13.08mA to 14.45mA at 3.3V when

transmitting at 0.125dBm, 13.57mA to 14.98mA at 3.3V when transmitting at 0.25dBm, 14.82mA to
16.35mA at 0.5dBm. These values were found by measuring the peak current consumption in a 5
second window, long enough for approximately 324 transmissions to occur.

Because the agent device was instructed to operate in continuous receiver mode instead of wake-on
radio mode, the agent power consumption was also larger than expected to be observed during
normal operation of the final product. The average current consumption on the agent observed by
the team was between 7.62mA to 8.4mA at 3.3V at 0.125dBm, 7.7151mA to 8.52mA at 3.3V when
transmitting at 0.25dBm, and 7.875mA to 8.695mA at 0.5dBm. Note that this current was measured
while the agent was switching between standby, receiving, and transmitting modes. Further, a small
increase in current is observed when the transmission power is increased, however the increase is
small since the transmission time is relatively short compared to the receiver time.

4 Appendices

4.1 OPERATION MANUAL

4.1.1 HARDWARE OVERVIEW

At a high level, the hardware is composed of three major components, with the remainder of the
hardware consisting of supporting circuitry. These major components are the RF harvester, the
MCU, and the transceiver. The MCU and RF harvester are soldered directly to the PCB, eliminating
the need for complicated external RF wiring to other boards. The transceiver is an external
evaluation-board offered by ON Semiconductor which connects to the PCB through a set of male
headers (item 1 in the below figure). The antennas used by the RF harvester and MCU (for
operational MCU-based transmit/receive) connect to the PCB through two SMA connections (item 2
and 3, respectively). The antenna used by the transceiver connects to the SMA connector located on
the evaluation board labeled “RX/(TX)”.

Figure 7: PCB with major components highlighted

To interact with the MCU externally, two 7x2 male connectors are provided (P2 and P3, or items 4
and 5 in the above figure). The connectors are designed to interface with either the female version
complimentary to this or female jumper cables depending on the application and permanence
thereof. Each connector has the following pin number scheme:

Figure 8: MCU port on PCB

Together, these connectors allow for the following signals to be externally accessed and used.

Signal Name Connector Connector Pin

MCU Pin 12 (DIO_7) P2 14

MCU Pin 14 (DIO_8) / Debug LED P3 1

MCU Pin 15 (DIO_9) / Debug LED P3 2

MCU Pin 16 (DIO_10) / Debug LED P3 3

MCU Pin 17 (DIO_11) P3 4

MCU Pin 18 (DIO_12) P3 5

MCU Pin 19 (DIO_13) P3 6

MCU Pin 20 (DIO_14) P3 7

MCU Pin 21 (DIO_15) P3 8

MCU Pin 26 (DIO_16) P3 9

MCU Pin 27 (DIO_17) P3 10

MCU Pin 28 (DIO_18) P3 11

MCU Pin 29 (DIO_19) P3 13

MCU Pin 30 (DIO_20) P3 12

MCU Pin 31 (DIO_21) P3 14

MCU Pin 32 (DIO_22) P2 1

MCU Pin 36 (DIO_23) P2 2

MCU Pin 37 (DIO_24) P2 3

MCU Pin 38 (DIO_25) P2 4

MCU Pin 39 (DIO_26) P2 5

MCU Pin 40 (DIO_27) P2 6

MCU Pin 41 (DIO_28) P2 7

MCU Pin 42 (DIO_29) P2 8

MCU Pin 49 (GND) P2 11, 13

MCU Pins 13, 22, 34, 44, 45, 48 (VDD) P2 10, 12

Transceiver IRQ P2 9

For programming purposes, a JTAG interface is also provided. The interface utilizes a 6-pin male
header (P1, or item 6 in the above figure) to break out the necessary JTAG signals for external
programming.

Figure 9: PCB JTAG Interface

Signal Name Connector Connector Pin

No Connection P1 1

GND P1 2

JTAG_TCKC P1 3

Reset P1 4

JTAG_TSMC P1 5

Vdd P1 6

4.1.2 HARDWARE CONFIGURATION

For research, testing, and debugging purposes, the hardware can be configured in a number of
ways. Configuration changes are made possible by three switches located on the board, as shown
below.

Figure 10: PCB with configurable parts

Switch 1 is no more than a push-button which resets the MCU. When pressed, all running code in
the MCU is terminated, the MCU reboots, and code execution begins from the beginning.

Switch 2 is a VDD enable switch that connects or disconnects the harvester’s Vout to the rest of the
components. Allowing the MCU to be disconnected if so desired.

Switch 3 is used to choose whether the Debug LED’s on board should be used or not. This is because
LEDs use a lot of power and these pins are also wired to the connector for use by the user.

Switch 4 allows the transceiver to be powered by the harvesters boost converter through the Vdd
copper pour instead of powering off the secondary boost converter. This is because the boost
converter is out of stock.

4.1.3 SOFTWARE OVERVIEW & CONFIGURATION

To aid in research activities, the software which accompanies the hardware contains not only an
existing program which implements base project functionality, but also exposes a large set of
methods which allow for custom communication between the MCU and the low-power transceiver.
The existing program is located in the example_program.c file. By default, this template will
configure a device as a slave in the IoT network. In this state, the MCU will sleep until a wake-up
signal is received, at which point it will wake up, retransmit the wake-up signal to neighboring slave
devices, and call the usercode() method. This method is left blank and is where user code is
intended to be added. Once execution of the usercode() method has been completed, the MCU will
return to sleep until the next wake-up signal.

The custom communication methods provided for research purposes are located in the trns.c file.
Several key methods are discussed below, but additional detailed documentation is provided
through in-code documentation.

● uint8_t trns_testSPICommunication()
Communication between the MCU and transceiver is established using SPI. To confirm if the
MCU and transceiver are able to communicate with each other over SPI, this method may be
used. The method writes and then reads a sequence of bytes to the transceiver’s SCRATCH
register. If the written data matches the received data, SPI communication is assumed to be
good, and the method returns 1. If communication fails, the method returns 0.

● uint8_t trns_testInterrupt()
The transceiver is able to inform the MCU of a received message through an interrupt. To
test that the MCU and transceiver’s interrupt capabilities are working correctly with each
other, this method may be used. The method instructs the MCU to wait until it receives an
interrupt, and then tells the transceiver to set its interrupt in high. If successful, the method
will return a 1. If the interrupt is not received or sent, the method will continue looping.

● void tnrs_setPwrMode(uint8_t mode)

To aid in changing the power mode of the transceiver, this method is provided. The method
expects a valid power mode (refer to the transceiver programming manual for valid power
modes) as input and instructs the transceiver to enter the power mode. Some power modes
cannot be switched to immediately, and so the transceiver programming manual
recommends reading transceiver registers to see when the power mode change has been
completed. This method does not implement these checks.

● trns_setupTx()
A large number of registers must be set to properly configure the transceiver for
transmission. This method writes to the target registers and provides a default transmission
configuration. The list of registers to be written to should always stay the same. You can
change some configuration settings (carrier frequency, modulation scheme, frequency
deviation, bit rate etc) by obtaining those values from AXRadioLab. See below for
information on AXRadiolab.

● trns_setupRx()
A large number of registers must be set to properly configure the transceiver for receiving.
This method writes to the target registers and provides a default receiving configuration.The
list of registers to be written to should always stay the same. You can change some
configuration settings (carrier frequency, modulation scheme, frequency deviation, bit rate,
max offsets etc) by obtaining those values from AXRadioLab. See below for information on
AXRadiolab.

● trns_transmit(uint8_t *pkt, uint16_t pktlen)

This method allows for a custom packet to be transmitted wirelessly from the transceiver to
a neighboring device. The method expects an address to an unsigned 8-bit integer array to
be passed in, along with the length of the packet. The packet is placed directly into the
transceiver FIFO, so it should contain any chunk header or command information needed by
the transceiver. Refer to the transceiver’s programming manual. The method does not
automatically configure the transceiver for transmit mode or change its power mode; this
must be done before the transmit method is called.

● trns_receive_isr(uint8_t *ax5043_rxbuffer,uint8_t *ax5043_pktlen,int32_t

*ax5043_offset,int16_t *ax5043_rssi, int16_t *ax5043_offset_hz)

This method should be called once the AX5043 throws an interrupt indicating a packet was
received. The method expects an unsigned 8-bit integer array, ax5043_rxbuffer, that is at
least the expected packet size length (to mitigate this the array can be set to have a size of
256 which is the max packet the AX5043 can receive). The method will also return the packet

length, offset, RSSI, and frequency offset and save those values using pointers passed in as
arguments. The rxbuffer will contain any chunk header or command information from the
packet and the packet length will reflect this as well. The method keeps the device in the
same mode it was while receiving the packet.

Due to the complexity of the transceiver and the number of registers that need to be configured for
proper use, along with the lack of documentation of some registers, it is not recommended to
calculate all register values by hand when changing transmit and receive configurations. ON
Semiconductor provides software, called “AXRadioLab”, which provides a GUI and is capable of
generating register values given some desired Tx/Rx configuration. ON Semiconductor also
recommends in their documentation using this tool for determining register values. The tool can be
found here. Use of this tool is not necessary for the example project as all register values have
already been determined.

4.1.4 EXAMPLE CODE INSTRUCTIONS

The below instructions assume that two copies of this project are being used, one for the slave
device and one for the master. If desired, a different transmitter can be used to generate the
wake-up signal that the slave node expects.

For hardware, connect a CC1352 MCU to an AX5043 transceiver evaluation board. This may be done
either using the provided hardware or by breadboard. You may power the system off either the RF
harvester or a constant voltage supply, although operating off the RF harvester may be inconvenient
for first-time use. Do the same with another CC1352 MCU and AX5043, although ensure that this
pair is powered off a constant voltage supply. The first pair will serve as a slave node in our IoT
network, and the second will serve as a master node. You will need to connect an XDS110 probe to
interface Code Composer Studio (CCS) running on a computer with the MCU to program it. For
software, you will need the provided trns.c, trns.h, spi.c, spi.h, trns_registers.h, and
example_program.c files. These should already be located in the provided project. You will also need
the TI-RTOS project in the workspace, which can be downloaded from the Resources Explorer in
CCS.

Once all files are installed, connect the computer to the slave MCU through JTAG and open the
example_program.c file. The file contains several existing methods which can be left as-is. In the
masterThread method, ensure the MCU will be configured as a slave node by ensuring the
trnsSlave() method is being called, not the trnsMaster() method. The file will also contain a
usercode() method which is blank. Add any code that you want executed when a wake-up signal is
received on the slave node; for example, if operating off a constant power supply instead of the RF
harvester, you may wish to toggle the debug LEDs on and then off. If operating off the RF harvester,
note that the code being executed should not leave the MCU on long enough to drain the harvester
capacitor or present a large load.

https://www.onsemi.com/pub/Collateral/AX-RADIOLAB%20(WINDOWS%20INSTALLER).ZIP

Flash the code to the MCU. The slave node will initially remain inactive because no wake-up signal is
being transmitted. Repeat the programming process with the master MCU. Ensure the
masterThread() method is calling trnsMaster() instead of trnsSlave(). Do not worry about the
usercode() method since this method is not used by the master node, only slave nodes. Do not
worry about packet contents, length, or the preamble, as this is handled already.

Once flashed, the master node will begin transmitting the default wake-up signal to all surrounding
slave nodes. If using debug LEDs in the usercode() method, you will be able to see the slave node
LEDs toggle on and off as the device receives wake-up signals. You may also debug the master node
to observe console outputs indicating when a packet has been sent by the master and received by a
slave.

4.1.2 ADDITIONAL RESOURCES

Additional resources are not necessary to use the example project, which is a demonstration of the
base product requested of the senior design team. However, the end goal of this project is to serve
as a research platform for wireless IoT communication, and so it is anticipated that additional work
which builds upon the provided project may be performed. In this case, the following resources
(focused on the CC1352 MCU and AX5043 transceiver) may be beneficial.

1. CC1352 Datasheet
2. CC1352 Technical Reference Manual
3. AX5043 Datasheet
4. AX5043 Programming Manual
5. AX5043 Evaluation Board Schematic
6. Online Reference Source for AX5043

4.2 ALTERNATIVE VERSIONS

Each iteration of the design process had an issue that significantly changed the overall design.
Starting from the first design, we assumed there was a way to bypass the harvester module’s
hysteresis loop to force it on during its off cycle. While it looks like a good plan in theory, after
looking into the datasheet and trying to get in touch with the manufacturer, we concluded that it
was not possible to have access to the on board DC-DC converter to trigger it on. Instead of making
our own harvester in which we could control the DC-DC converter powering the rest of the devices,
we opted to stay with the third-party harvester since our knowledge is limited and implementing a
harvester would significantly add complexity to the project that was unnecessary.

https://www.ti.com/lit/ds/symlink/cc1352r.pdf?ts=1619288428093&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/swcu117i/swcu117i.pdf?ts=1619235753785&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FCC2650
https://www.onsemi.com/pub/Collateral/AX5043-D.PDF
https://www.avnet.com/wps/wcm/connect/onesite/f9ac1a84-e032-46a0-8366-23cc8fa19fc4/ON-Semiconductor-AX5043+Programming+Manual.PDF?MOD=AJPERES&CVID=m48T788&CVID=m48T788&CVID=m48T788&CVID=m48T788&CVID=m48T788&CVID=m48T788&CVID=m48T788&CVID=m48T788&CVID=m48T788&CVID=m48T788
https://www.onsemi.com/pub/Collateral/ADD5043-433-2-GEVK%20SCHEMATIC.PDF
https://notblackmagic.com/bitsnpieces/ax5043/

Figure 11: Proposed Design

For the second design idea, its simplicity is what was most attractive. The biggest issue with this
design is that the MCU would not be off when the trigger is received. Specifically, since the onboard
harvester’s hysteresis loop is not something we have access to, the trigger won’t change the
operation if the MCU is active. On the other hand, if the MCU is off, it is because the Powercast
DC-DC converter is off, meaning that it is in the charging state. If the trigger connected the MCU to
the Powercast output, it would still not turn on. Thus this design was redundant and didn’t meet the
goals and requirements of the final device.

Figure 12: Design Option 2 - Rejected

Our accepted design is depicted in the figure below. The reason we could not end up implementing
this design fully is mentioned in section 1.4 on design revisions. Due to the silicon shortage, we were
not able to procure the DC-DC regulator or a CC1352R MCU surface mount component to use on
our PCB. Since we were not able to test the DC-DC regulator, we opted to change our design so it is
not required. Luckily in terms of the MCU not being available, we were able to use CC1352R MCUs

on a Launchpad and also in its SensorTag package and connect to the other components through
jumpers and breadboards.

Figure 13: Intended Design

4.3 CONSIDERATIONS

During the testing phase where we were trying to get the AX5043 transceivers to communicate, we
had multiple failures. Our different testing methods are listed below.

Setup:
We had a CC1352 MCU and AX5043 transceiver wired together so that the MCU could communicate
with the transceiver through SPI. The MCU set register values to configure the transceiver.

For all tests, we started by confirming that we could actually program the transceiver with SPI
(achieved by writing and reading from a test register) and also tested the interrupt function by telling
the transceiver to trip its interrupt pin and waiting on the MCU. This allowed us to confirm that SPI
and interrupts were not causing us to fail tests. Furthermore, when we wrote to the transceiver over
SPI, we read the register written to immediately after to confirm a miscommunication did not occur.

What we had tried:
- Configuring both AX5043 transceivers for FSK modulation with 9600 baud rate and

frequency deviation of 3kHz. One was set to keep transmitting and the other was set to
throw an interrupt when it receives any data (the internal FIFO is not empty). Our transmitter
sends a preamble of 0x55 for 20 bytes, followed by a data set. We had CRC on for this set of
tests.

1) We initially tried sending a 6 byte message

2) We also tried filling up the transmitter’s data FIFO until it was full. We
checked a flag to confirm if the FIFO was full, committed the data, and then
instructed the transmitter to send the data. Once transmission was
complete, we checked the flag register again to confirm that the FIFO was
completely empty.

a) Seeing the FIFO go from full to empty is one reason we believe we are
able to transmit data, and that our problems are on the receiver.

3) Reading the FIFO on the receiver yielded zeros, and reading the number of
bytes received also yielded zero.

- Configuring both AX5043 transceivers for FSK modulation with 9600 baud rate and
frequency deviation of 9kHz. We had CRC off for this set of tests, and the receiver was just
saving the raw received bits.

- We increased the frequency deviation because we thought 3kHz was too
constrained.

- Configuring a CC1352 MCU LaunchPad to act as an FSK receiver with a 9600 baud rate and
frequency deviation of 9kHz. We confirmed the LaunchPad’s receiving functionality by
configuring another LaunchPad as a transmitter and testing communication. Then, we used
the receiver to try to receive data from an AX5043 configured as a transmitter.

- The goal here was to prove that we actually were transmitting data. However, the API
used by the CC1352 MCU includes additional features (such as sync word) that we
are not sure we correctly implemented. So, this test has not yielded meaningful
results. The problem could either be our AX5043 isn’t transmitting or our Tx/Rx have
different configurations.

- We changed the setup so that both are in receive mode and are able to transmit by pressing
a button. This was mostly a convenience factor, but also allowed us to confirm that our
process of going from one state (Tx/Rx) to the other (Rx/Tx) is correct.

- With the help of Dr. Neihart and his Spectrum Analyzer, we tested whether we could actually
transmit. The result was a notable signal in the 200MHz range with a large BW that would
disappear when our device was powered down. After some time we confirmed this was a
result of the external oscillator on board since cutting power to that while powering
everything else made the signal disappear. This confirmed we were not, in fact, transmitting.

Components:
2 x CC1352R MCUs
2 x AX5043 Transceivers set for 433MHz RF communication

4.4 DATA

Distance (in) R(Ω) Ton (ms) Toff (ms)

5 5460 on N/A

4650 on N/A

1470 on N/A

670 570 380

47 on N/A

10 5460 9300 680

4650 6960 780

1470 1000 640

670 380 640

47 10.6 N/A

15 5460 2220 1040

4650 1880 1100

1470 680 980

670 320 960

47 9 N/A

20 5460 2040 1520

4650 1780 1520

1470 700 1460

670 340 1400

25 5460 2080 2360

4650 1860 2140

1470 700 2060

670 340 2100

30 5460 2160 7280

4650 1920 5220

1470 780 4680

670 340 4360

35 5460 2120 11900

4650 1920 7140

1470 780 8060

670 340 9460

40 5460 2120 10900

4650 1880 11680

1470 720 11440

670 324 12940

Figure 14: Powercast Harvester Test Results (complete)

Pout (dBm)
Ping per 5
second Avg. Ping per 1 sec Distance (cm)

0.1252441406 52 10 8

0.1252441406 51 10 10

0.1252441406 48 10 12

0.1252441406 33 7 12.5

0.1252441406 20 4 13

0.1252441406 15 3 13.5

0.1252441406 0 0 14

0.2502441406 52 10 8

0.2502441406 52 10 10

0.2502441406 51 10 12

0.2502441406 51 10 13

0.2502441406 51 10 14

0.2502441406 51 10 14.5

0.2502441406 47 9 15

0.2502441406 45 9 15.5

0.2502441406 43 9 16

0.2502441406 33 7 16.5

0.2502441406 13 3 17

0.2502441406 10 2 17.5

0.2502441406 3 1 18

0.2502441406 0 0 18.5

0.5002441406 51 10 8

0.5002441406 51 10 10

0.5002441406 51 10 12

0.5002441406 51 10 13

0.5002441406 51 10 14

0.5002441406 51 10 16

0.5002441406 51 10 18

0.5002441406 51 10 20

0.5002441406 50 10 22

0.5002441406 49 10 24

0.5002441406 31 6 25

0.5002441406 30 6 25.5

0.5002441406 12 2 26

0.5002441406 0 0 26.5

0.5002441406 0 0 27

0.5002441406 49 30

0.5002441406 32

Figure 15: AX5043 example Agent-Controller packet results

Master TXing

TXPWRCOEFFB0

Lower bound on
Maximum Peak
Current
Consumption that
could last for
average of 15.4ms

Upper bound on Maximum
Peak Current Consumption
that could last for average of
15.4ms

0x20 0.01445205047 0.01308942857

0x40 0.01498138801 0.01356885714

0x80 0.01635772871 0.01481542857

Slave on continuous Rx and Tx (using example program)

TXPWRCOEFFB0

Average current
consumption of
example program
w/o user code

Average current
consumption of example
program w/o user code

0x20 0.008413249211 0.00762

0x40 0.00851829653 0.007715142857

0x80 0.008694952681 0.007875142857

Figure 16: AX5043 example Agent-Controller power results

4.5 HARDWARE SCHEMATICS

Figure 17: Main Schematic

Figure 18: Boost Regulator Schematic

Figure 19: Harvester Schematic

Figure 20: MCU Schematic

Figure 21: Transceiver Schematic

5 References
[1] “CC1352R,” Texas Instruments, May-2020. [Online]. Available:
https://www.ti.com/product/CC1352R. [Accessed: 23-Oct-2020].

[2] L. Wilhelmsson and D. Sundman, “Wake-Up Radio – A key component of IoT?,” Ericsson.com,
18-Dec-2017. [Online]. Available:
https://www.ericsson.com/en/blog/2017/12/wake-up-radio--a-key-component-of-iot. [Accessed:
23-Oct-2020].

[3] “Low Input Voltage Boost Converter,” Texas Instruments, Dec-2014. [Online]. Available:
https://www.ti.com/lit/ds/symlink/tps61202.pdf?HQS=TI-null-null-digikeymode-df-pf-null-wwe&t
s=1600912252796. [Accessed: 23-Oct-2020].

[4] “P2110B Datasheet,” Powercast, 2016. [Online]. Available:
https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf.
[Accessed: 23-Oct-2020].

[5] “AX5043 Programming Manual,” ON Semiconductor, Feb-2017. [Online]. Available:
https://bit.ly/3dO39A3 [Accessed: 24-Apr-2021].

